Формула досрочного погашения кредита при аннуитетных платежах

Полезная информация по теме: "Формула досрочного погашения кредита при аннуитетных платежах". Здесь собрана и обработана имеющаяся информация по теме. Мы постарались приподнести ее в удобном и понятном виде. Если у вас возникнут вопросы, просьба задавать их нашему дежурному консультанту.

www.platesh.ru

Свежие записи

Дифференцированные платежи равными частями – вариант ежемесячного платежа по кредиту, когда размер ежемесячного платежа является одинаковым (как при аннуитетных платежах), однако способ расчёта ежемесячного платежа такой же как и при дифференцированном способе погашения кредита.

Кроме того, такой вид платежей называют досрочным.

Ежемесячный платёж по дифференцированой схеме равными частями состоит из двух составляющих. Первая часть называется основным платежом, размер которого увеличивается к концу срока кредитования. Основной платёж идет на непосредственное погашение долга. Вторая часть – убывающая, которая у уменьшается к концу срока кредитования. Данная часть идёт на погашение процентов по кредиту.

При досрочной схеме погашения кредита, ежемесячный платёж рассчитывается как сумма основного платежа и проценты, начисляемые на оставшийся размер долга. При дифференцированной схеме платежей равными частями размер долга уменьшаяется довольно быстро, естественно начисленные проценты на оставшийся размер кредита убывают также быстро. Досрочное погашение в совокупности с дифференцированной схемой платежей является наиболее выгодным с точки зрения потребителя, поскольку именно при такой схеме получается наименьшая переплата процентов по кредиту. Дифференцированная схема платежей равными частями может применяться в банках, дающими кредиты по дифференцированной схеме и не берущие штрафы за досрочное погашение.

Расчёт досрочного погашения

Для расчёта ежемесчного платежа и начисленных процентов можно воспользоваться онлайн кредитным калькулятором, либо используя обычный калькулятор, произвести вычисления самостоятельно. Расчёт графика полатежей при досрочном погашении сильно схож с расчётом графика дифференцированых платежей, с той лишь разницей, что при вычислении остатка по кредиту берётся не основной платёж, а разность между запланированым платежём и начисленными процентами.

Стоит так же сказать, что размер ежемесячного платежа при досрочной схеме погашения не должен быть меньше ежемесячного платежа при обычной дифференцированной схеме. Понятно, что перый платёж может оказаться достаточно большим, тогда досрочная схема может применяться начиная со второго, третьего и т.д. платежа. Таким образом при дифференцированной схеме платежей равными частями важно знать размер первого платежа. Для этого необходимо начать расчёт как и при обычной дифференцированной схеме, начиная с определения основного платежа.

Размер основного платежа вычисляется следующим образом: необходимо сумму кредита разделить на количество месяцев, за который планируется погашение кредита. Полученное число будет являться основным платежём.

b = S / N , где
b – основной платёж, S – размер кредита, N – количество месяцев.

Для расчета начисленных процентов нужно остаток кредита на указанный период умножить на годовую процентную ставку и всё это поделить на 12 (количество месяцев в году).

, где
p – начисленные проценты, — остаток задолженности на период, P – годовая процентная ставка по кредиту.

Чтобы рассчитать остаток задолженности на период, т.е. найти величину Sn из приведённой выше формулы, необходимо размер планируемого ежемесячного платежа умножить на количество прошедших периодов, всё это вычесть из общей суммы платежа и добавить в разности количетво процентов, сумма которых не пошла на погашение основной суммы кредита.

, где
n – количество прошедших периодов, — размер начисленных процентов на i-й платёж, B – размер планируемого ежемесчного платежа.

Пример расчёта графика досрочного погашения

Для примера рассчитаем график платежей по дифференцированному кредиту в размере 100000 р. и годовой процентной ставкой 10%. Сроком погашения кредита возьмём 6 месяцев. При этом семья, взявшая кредит, планирует ежемесячно отдавать по 20 тыс. р., и хочет с наименьшими переплатам погасить кредит.

Определим размер основного платежа: 100000 / 6 = 16666,67

Он является меньше планируемой суммы, так что начнём расчёт досрочного погашения прямо с первого платежа.

1 месяц
Проценты: 100000 * 0,1 / 12 = 833,33
Основной долг: 20000 – 833, 33 = 19166,67
2 месяц
Остаток кредита: 100000 – 19166,67 = 80833,33
Проценты: 80833,33 * 0,1/12 = 673,61
Основной долг: 20000 – 673,61 = 19326,39
3 месяц
Остаток кредита: 80833,33- 19326,39 = 61506,94
Проценты: 61506,94 *0,1/12 = 512,56
Основной долг: 20000 – 512,56 = 19487,44
4 месяц
Остаток кредита: 61506,94 — 19487,44 = 42019,50
Проценты: 42019,50 * 0,1/12 = 350,16
Основной долг: 20000 – 350,16 = 19649,84
5 месяц
Остаток кредита: 42019,50 — 19649,84 = 22369,66
Проценты: 22369,66 * 0,1/12 = 186,41
Основной долг: 20000 – 186,41 = 19813,59
6 месяц
Остаток кредита: 22369,66 — 19813,59 = 2556,08
Проценты: 2556,08 * 0,1/12 = 21,30

Отметим, что размер части платежа, идущей на погашение долга равна сумме оставшегося долга по кредиту. А платёж за этот месяц будет составлять сумму остатка по кредиту плюс начисленные проценты в размере 21,30 р.

Что бы рассчитать размер переплаты при досрочном погашении, необходимо сложить все ежемесячные выплаты и вычесть полученную сумму из первоначального долга. В нашем случае это будет выглядеть так:

100000 — 20000 * 5 + 2556,08 + 21,30 = 2577,38

Результат подсчётов по нашему примеру на сайте http://www.platesh.ru будет выглядеть следующим образом:

Форма ввода данных для расчёта досрочного погашения

Пример графика досрочного погашения

Что подтверждает правильность наших расчётов.

Формула расчета аннуитетных платежей.

Применяемая банками формула расчета аннуитетных платежей.

Формулы кредитования

Аннуитетные платежи, формула расчета.

Аннуитетные платежи — такие платежи, при которых каждый платежный период заемщик вносит одинаковый размер платежа, часть из которого идет на уплату процентов банку за пользование кредитными деньгами, а часть — на уменьшение ссудной задолженности заемщика.

Применяемая банками формула расчета аннуитетных платежей

выглядит так:

Размер
ежемесячного
платежа
= ОСЗ X ПС
————————————
1-(1+ПС) -(ПП-1)

Остаток ссудной задолженности.
На дату выдачи кредита соответствует размеру кредита. В случае расчета при досрочном погашении, равняется остатку задолженности по кредиту.

величина, равная 1/(12х100) от годовой процентной ставки, установленной по кредиту.

количество платежных периодов, оставшихся до полного возврата суммы кредита.

Расчет размера Ежемесячного платежа производится с точностью до доллара США, при этом округление производится по математическим правилам.

Кредитные калькуляторы: как посчитать платежи по ипотеке

Кредитные калькуляторы: как посчитать платежи по ипотеке

Аннуитетный платеж.В двух банках сделала расчет, и так же не сошлось с местным калькулятором — сумма ежемесячного взноса в банке оказалась больше, а переплата по кредиту — меньше. Как такое может быть -не понимаю. В формуле тоже стоит ОСК, но есть приписка: при осуществлении частичного досрочного возврата кредита учитывается основной долг на дату исполнения обязательств по уплате платежей. Я так понимаю, это приравнивается к ОСЗ?формула:размер еж.пл. = ОСК* ПС / (1-(1+ПС)^(-(ПП-1))
Дмитрий К | 22 июня Аннуитетный платеж.Добрый день!Не могу понять в чем разница между ОСК и ОСЗ и можно ли повлиять на изменение в договоре с банком связанные с этими параметрами. Собираюсь оформлять ипотеку Транскапитале, по типовому договору там стои ОСК. Дмитрий Овсянников | 18 июня Аннуитетный платеж.Попробуйте посчитать по кредитному калькулятору: https://www.ipotek.ru/kreditny_kalkulatory.php. Сперва произведите расчет, а затем, подставляя цифры досрочного погашения, смотрите как изменяется либо размер ежемесячного платежа, либо срок кредита.
Читайте так же:  Разделение налогов на федеральные региональные и местные

Видео по теме:

Новое в блогах

12.07.2019

05.02.2019

26.02.2018

Расчет аннуитетных платежей по кредиту: формула, пример

Кредит выдается на условиях дальнейшего возвращения средств банку. Причем вместе с погашением задолженности заемщик должен оплачивать процентную ставку. Несмотря на значимость последнего параметра, не менее важным в определении уровня переплаты является способ начисления платежей. Следует разобраться, в чем разница между разными формами погашения займа и как рассчитать аннуитетный платеж по кредиту.

Погашение задолженности по займу

В 2016 году общая сумма задолженности населения по кредиту превышала в 10 000 миллиардов рублей. Большая часть банковских организаций обговаривает условия возвращения взятых взаймы средств перед их выдачей. Существует две основных формы погашения задолженности по займу:

  • дифференцированными платежами;
  • аннуитетными платежами.

Хотя большая часть заемщиков при выборе кредитной программы обращает основное внимание на размер процентной ставки и уже на основании данного параметра подбирает оптимальный заем, способ начисления процентов и погашения кредита также играет большую роль в окончательной его стоимости.

Дифференцированные платежи являются более выгодными для заемщика. В случае подобного способа возвращения средств, клиент одновременно погашает и «тело» кредита и процентную ставку. Благодаря этому, ежемесячные выплаты будут с каждым месяцев сокращаться, поскольку с каждым месяцев проценты начисляются на меньшую сумму (тело кредита уменьшается с каждым последующим платежом).

По очевидным причинам данная форма расчета имеет ряд положительных черт. Во-первых, клиент сразу начинает выплачивать тело кредита. Во-вторых, одновременно идет погашение процентной ставки. В-третьих, благодаря постепенному уменьшению задолженности именно по телу займа, а не по процентам, конечная стоимость такого кредита ниже, нежели в случае с аннуитетными займами. Но поскольку банковские организации заинтересованы в получении как можно более высокого дохода, чаще всего ими применяется график аннуитетных платежей.

Аннуитетные платежи

В случае с дифференцированными платежами заемщик сразу же начинает погашать тело займа. Чем меньше средств должен клиент банку, тем меньшая сумма процентной ставки насчитывается. Это невыгодно финансовому учреждению, поскольку именно те средства, которые поступают за счет уплаты процентов, являются основным источником дохода таких организаций. В случае с аннуитетными платежами ситуация выглядит иначе.

Аннуитетный заем предполагает погашение задолженности равными частями (чего нет при дифференцированном кредите). Положительной чертой такой формы выплат является возможность ежемесячного внесения небольшой постоянной суммы. При дифференцированном кредите клиенту необходимо сразу вносить больше денег, но со временем платежи по займу уменьшаются. Поскольку далеко не все граждане имеют возможность выделять большое количество денег со своего бюджета, аннуитетные займы пользуются большей популярностью среди населения.

Существует веская причина, по которой финансовые учреждения также отдают предпочтение аннуитетным кредитам. При такой форме кредитования заемщик возвращает средства равными частями, однако первое время значительная часть денег идет на погашение процентов по кредиту, а не тела займа. Расчет аннуитетных платежей по кредиту производится таким образом, что клиент сразу же вносит средства в счет уплаты процента, а на погашение самого займа уходит лишь определенная часть платежа, которая увеличивается со временем.

Поскольку в первый период значительная часть средств идет на погашение процентной ставки, начисляемой на остаток по кредиту, окончательная стоимость займа будет более высокой, нежели при дифференцированном займе. Причина тому – более медленное погашение тела займа, с которого и начисляются проценты.

Как рассчитать размер платежа

Как уже было сказано ранее, аннуитетная форма платежей предусматривает ежемесячное перечисление банку одинаковых сумм. При этом сам платеж можно разбить на две основные части:

  1. Первая часть идет на погашение процентов по займу. Размер этой части постепенно уменьшается, ближе к окончанию срока выплат.
  2. Вторая часть используется для возвращения «тела» кредита. При аннуитетной форме платежей данная часть постепенно увеличивается, достигая своего пика ближе к концу погашения займа.

Чтобы разобраться, как производить расчет аннуитетных платежей по кредиту, необходимо привести формулу. Ниже будет рассмотрена формула для расчета размера платежей, а также определения, какая часть средства идет на уплату процентов, а какая – непосредственно на погашение долга.

Формула для расчета довольного сложная. В ней учитывается множество параметров, некоторые из которых незнакомы обычному рядовому клиенту финансовых учреждений. Выглядит она следующим образом.

Показатели, приведенные в формуле, обозначают:

  1. Мп – месячный платеж по займу;
  2. Сз – общее количество средств, взятых взаймы;
  3. Мпс – размер месячной процентной ставки;
  4. Ск – срок займа (количество месяцев) когда будут начисляться проценты по нему.

Формула расчета аннуитетного платежа по кредиту, как уже было сказано, довольно сложная. Для того чтобы все высчитать, придется использовать калькулятор. Чтобы лучше понять, как рассчитать данный параметр, следует привести конкретный пример.

Пример расчета аннуитетного платежа

Для того чтобы произвести расчет, необходимо знать общую сумму займа, проценты по нему, месячную процентную ставку и общий срок, на который выдан кредит. В данном случае будут использоваться следующие параметры:

  1. Сумма займа – 40 тысяч рублей.
  2. Ставка – 22% годовых.
  3. Срок, на который взяты деньги, – 2 года (то есть 24 месяца).

Прежде чем использовать формулу, необходимо установить значение еще одного параметра – месячной процентной ставки. Делается это следующим образом:

Мпс = годовая процентная ставка / 100 / 12.

В данном случае размер месячной процентов ставки будет следующим:

22 / 100 / 12 = 0, 0183.

Расчет кредита с аннуитетными платежами с такими параметрами выглядит следующим образом:

40 000 х (0,0183 / (1 – (1 + 0,0183) -24 )).

После проведения всех расчетов будет получена следующая сумма – 2075 рубля 13 копеек. Именно столько денег клиенту придется ежемесячно сплачивать для закрытия займа.

Зная окончательный размер платежа, легко вычислить, сколько денег будет переплачено после его окончательной выплаты. Для этого необходимо сумму, полученную ранее, умножить на срок кредита:

2075 * 24 = 49 803 рублей. Окончательная переплата будет составлять: 49 803 – 40 000 = 9 803 рублей.

Как облегчить проведение расчетов

Поскольку вручную производить вычисления довольно сложно, можно воспользоваться функционалом программы Excel, входящей в пакет ПО Microsoft Office от корпорации Microsoft. Среди функций, прописанных в ней, есть «ПЛТ», с помощью которой можно произвести необходимые вычисления.

Порядок действий довольно простой. Необходимо создать новую таблицу и в любой пустой ячейке прописать следующую формулу: «=ПЛТ(22%/12; 24; -40 000)». В данном случае:

  1. «=ПЛТ» – функция.
  2. 22%/12– размер годовой процентной ставки.
  3. 24– срок займа.
  4. -40 000 – сумма займа.

Знак «=» перед началом формулы имеет большое значение. Без него программа будет воспринимать введенное как простой текст и не произведет вычисления. Все параметры необходимо вводить именно в том порядке, в котором они обозначены выше. Между ними обязательно должна стоять точка с запятой. Несоблюдение данных правил может привести к ошибке во время вычислений. После введения данных необходимо нажать клавишу Enter.

Программа произведет расчет и выдаст результат, который будет соответствовать сумме, полученной в предыдущем примере. Использование Excel позволяет значительно сократить время вычислений и облегчает работу заемщику. Однако существует еще более просто способ расчета ежемесячного платежа.

Читайте так же:  Приведение в соответствие вида разрешенного использования

Сегодня в Интернете размещено большое количество онлайн-калькуляторов, при помощи которых можно осуществить соответствующий расчет. Достаточно ввести необходимые данные (сумму займа, его срок и процентную ставку), после чего совершить операцию. Автоматическая система самостоятельно вычислит как размер месячного платежа, так и общую сумму выплат вместе с уровнем переплаты.

Вычет средств, которые пойдут на погашение процентной ставки

Заемщик также может самостоятельно рассчитать количество средств, которые взимаются в учет выплат по проценту. Для этого необходимо воспользоваться специальной формулой. Она гораздо проще предыдущей. Как рассчитать проценты по кредиту при аннуитетных платежах? Необходимо умножить количество средств, которые еще нужно внести (то есть текущий размер задолженности по займу) на месячную процентную ставку.

В качестве примера стоит вычислить, какая часть из 2075 рублей (размер ежемесячного платежа, полученный ранее) тратится на уплату процентной ставки при первом платеже. В данном случае применяется следующая формула:

  • Сз (сумма задолженности по кредиту) х Мпс.

Поскольку платеж будет первым, задолженность на момент его внесения составит 40 000 рублей. Соответственно, с 2075 рублей на уплату процента идет: 40 000*0,0183 = 732 рубля. Во втором платеже: 38657 (задолженность на момент произведения второй выплаты) * 0,0183 = 707 рублей.

Получив эти данные, заемщик может без проблем рассчитать, какая часть задолженности перед банком действительно погашается во время платежа. Для этого достаточно от суммы платежа отнять ту часть, которая уходит на проценты. Проведя это действие, заемщик получит результат – 1343 рубля (2075 – 732). При втором платеже в учет погашения тела долга уйдет 1368 р. (2075 – 707).

Соответственно, при первом переводе средств, несмотря на внесение 2075 рублей, чистый долг (без процентной ставки) уменьшится лишь на 1343 рубля и составит 38 657 р. Еще через месяц сумма задолженности уменьшится до 37 289 р. С течением времени на погашение тела будет выделяться больше средств, а на процентную ставку – меньше.

Такой подход к расчетам позволяет банку высчитывать процентную ставку с большей суммы, нежели при дифференцированных платежах. Это, соответственно, повышает размер средств, которые в итоге будут перечислены в учет процентов, и растягивает в плане продолжительности процесс погашения основного долга. То есть гражданин не только сплачивает больше денег в качестве процентной ставки, но и делает это на протяжении более длительного промежутка времени.

Следует ли соглашаться на аннуитетное погашение займа

Подобная форма погашения имеет свои преимущества. Как уже было сказано ранее, клиенту придется погашать заем путем ежемесячного перечисления небольших сумм. Поскольку в большинстве случаев в банк обращаются физические лица, не имеющие возможности выделить большое количество средств из семейного бюджета, аннуитетные платежи могут уменьшить финансовую нагрузку на гражданина.

Между тем, пример расчета аннуитетного платежа по кредиту, приведенный выше, показывает, что в таком случае заемщик значительно переплачивает. При параметрах, используемых в примере, окончательная стоимость займа будет превышать стоимость взятых взаймы средств приблизительно на десять тысяч рублей, что невыгодно для заемщика.

Дифференцированный заем сопровождается не такой большой переплатой. По этой причине он выглядит гораздо более привлекательным. Однако необходимо быть готовым к большим первым выплатам по займу (в некоторых случаях, многократно превышающим размер перечислений при аннуитетных платежах).

Таким образом, существует две основные формы расчета платежей по займу: дифференцированная и ануитетная. Вторая форма предполагает ежемесячное внесение фиксированной суммы. Она позволяет уменьшить финансовую нагрузку на заемщика, но сопровождается значительными переплатами по кредиту. Формулы, приведенные выше, дадут заемщику возможность предварительно вычислить все необходимые данные и принять решение о целесообразности взятия аннуитетного займа.

www.platesh.ru

Свежие записи

Виды платежей Когда заемщик отправляется в банк, помимо вида кредитной программы, его интересует вопрос погашения этого кредита. Менеджеры банков нередко склоняют клиентов к аннуитетной схеме погашения долга, забывая напомнить о том, что существуют еще и дифференцированные платежи. Разница между ними состоит в способе начисления и выплаты процентов.

При дифференцированной схеме погашения кредита займ выплачивается одинаковыми частями. На остаток задолженности начисляются проценты. Самые большие взносы ожидают заемщика в первые месяцы пользования кредитом. В дальнейшем, с каждым новым месяцем, будет уменьшаться сумма займа, а, следовательно, и сумма начисленных процентов, поскольку на цифру возвращенного долга проценты уже не насчитываются. С течением времени взнос становится меньше.

Поскольку при дифференцированных платежах заемщик должен возвращать займ равными частями, то такие платежи принято называть равнодолевыми. Клиент банка ежемесячно выплачивает учреждению определенную равную часть долга плюс проценты на невыплаченную сумму займа. Например, заемщик взял кредит в сумме 10000 условных единиц под 10% годовых сроком на 5 месяцев. Ежемесячно он должен возвращать банку 2000 условных единиц и сумму начисленных процентов на остаток невыплаченного долга.

Дифференцированная схема погашения долга выгодна для того заемщика, который желает взять в долг большую сумму денег на значительный срок (например, для покупки дома), но при этом имеет возможность погасить его досрочно. Ведь чем быстрее он будет возвращать долг, тем меньшая сумма процентов будет начислена.

Вторая схема погашения займа – это аннуитет. Он означает, что каждый месяц заемщик будет возвращать банку одинаковую сумму долга и процентов. В результате общая сумма начисленных процентов окажется выше, чем при дифференцированной системе. Да и сума основного долга не погашается равномерно: в первые месяцы выплат, «тело» долга остается практически нерушимым. В этом и скрывается основной смысл предложенного банковским учреждением аннуитета: отодвинуть на более поздний строк погашение «тела» кредита. А клиент в результате за такой кредит переплачивает. Пример: вы взяли в долг 50000 условных единиц под 13% годовых на 20 лет. При дифференцированной схеме возвращения долга переплата составит 130%, а при аннуитете – 181%.Ведь в последнем случае остаток долга сокращается медленнее.

Но в определенных случаях аннуитетная схема имеет свои преимущества: когда в долг берется незначительная сумма денег, на короткий (до 3 лет) срок и клиент не имеет возможности погашать кредит досрочно. Кроме того, некоторые банки устанавливают для своих клиентов на аннуитетной схеме «кредитные каникулы», отодвигая выплаты на несколько месяцев.

Так какой же способ погашения займа выбрать? При оформлении кредита добросовестный сотрудник банка просчитает для вас точные цифры платежей при разных схемах. Но потенциальный заемщик вполне способен и самостоятельно «прикинуть» наиболее выгодную для себя кредитную программу. Для этого существует кредитный калькулятор, который помогает увидеть реальные суммы денег, которые придется возвращать ежемесячно, и какая переплата получается в итоге. Используя кредитный калькулятор, потенциальный заемщик может выбрать для себя и банк-кредитор, который предлагает наиболее выгодные условия. Также им очень удобно пользоваться для расчета сумм погашения ипотечного кредита.

Читайте так же:  Уведомление в прокуратуру о рассмотрении представления образец

Кредитный калькулятор является тем универсальным инструментом, который помогает не только выбрать оптимальную кредитную программу, но и четко отслеживать свои денежные обязательства перед банком.

www.platesh.ru

Свежие записи

Аннуитетный платеж — вариант ежемесячного платежа по кредиту, когда размер ежемесячного платежа остаётся постоянным на всём периоде кредитования.

Ежемесячный платёж, при аннуитетной схеме погашения кредита состоит из двух частей. Первая часть платежа идёт на погашение процентов за пользование кредитом. Вторая часть идёт на погашение долга. Аннуитетная схема погашения отличается от дифференцированной тем, что в начале кредитного периода проценты составляют большую часть платежа. Тем самым сумма основного долга уменьшается медленно, соответственно переплата процентов при такой схеме погашения кредита получается больше.

При аннуитетной схеме выплат по кредиту, ежемесячный платёж рассчитывается как сумма процентов, начисленных на текущий период и суммы идущей на погашения суммы кредита.

Для расчёта размера ежемесячного платежа можно воспользоваться кредитным калькулятором. С помощью калькулятора кредитов можно определить размер начисленных процентов, а так же сумму, идущую на погашение долга. Кроме того, можно взять в руки обычный калькулятор и рассчитать график платежей вручную.

Расчёт аннуитетного платежа

Рассчитать месячный аннуитетный платеж можно по следующей формуле:

x – месячный платёж, S – первоначальная сумма кредита, P – (1/12) процентной ставки, N – количество месяцев.

Видео (кликните для воспроизведения).

Формула, для определение того, какая часть платежа пошла на погашение кредита, а какая на оплату процентов является достаточно сложной и без специальных математических знаний простому обывателю будет сложно ей воспользоваться. Поэтому мы рассчитаем данные величины простым способом, дающим такой же результат.

Для расчета процентной составляющей аннуитетного платежа, нужно остаток кредита на указанный период умножить на годовую процентную ставку и всё это поделить на 12 (количество месяцев в году).

, где
– начисленные проценты, — остаток задолженности на период, P – годовая процентная ставка по кредиту.

Что бы определить часть, идущую на погашение долга, необходимо из месячного платежа вычесть начисленные проценты.

s = x — , где
s – часть выплаты, идущая на погашение долга, x – месячный платёж, — начисленные проценты, на момент n-ой выплаты.

Поскольку часть, идущая на погашение основного долга зависит от предыдущих платежей, поэтому рассчёт графика, по данной методике вычислять последовательно, начиная с первого платежа.

Пример расчёта графика выплат по аннуитетному кредиту

Для примера рассчитаем график платежей по кредиту в размере 100000 р. и годовой процентной ставкой 10%. Сроком погашения кредита возьмём 6 месяцев.

Для начала рассчитаем ежемесячный платёж.

[3]

Затем рассчитаем по месяцам процентную и кредитную часть аннуитетного платежа.

1 месяц
Проценты: 100000 * 0,1 / 12 = 833,33
Основной долг: 17156,14 – 833, 33 = 16322,81
2 месяц
Остаток кредита: 100000 – 16322,81 = 83677,19
Проценты: 83677,19 * 0,1/12 = 697,31
Основной долг: 17156,14 – 697,31 = 16458,83
3 месяц
Остаток кредита: 83677,19 — 16458,83 = 67218,36
Проценты: 67218,36 *0,1/12 = 560,15
Основной долг: 17156,14 – 560,15 = 16595,99
4 месяц
Остаток кредита: 67218,36 — 16595,99 = 50622,38
Проценты: 50622.38 * 0,1/12 = 421.85
Основной долг: 17156,14 – 421,85 = 16734,29
5 месяц
Остаток кредита: 50622,38 — 16734,29 = 33888,09
Проценты: 33888,09 * 0,1/12 = 282,40
Основной долг: 17156,14 – 282,40 = 16873,74
6 месяц
Остаток кредита: 33888.09 — 16873.74 = 17014,35
Проценты: 17014,35 * 0,1/12 = 141,79
Основной долг: 17156,14 – 141,79 = 17014,35

Если интересно узнать размер переплаты по аннуитетному кредиту, необходимо ежемесячный платёж, умножить на количество периодов и из получившегося числа вычесть первоначальный размер кредита. В нашем случае переплата будет следующей:

17156,14 * 6 – 100000 = 2936,84

Результат подсчётов по нашему примеру на сайте www.platesh.ru будет выглядеть так:

Форма ввода данных для расчёта аннуитетного платежа
Пример графика аннуитетных платежей

Что подтверждает правильность наших расчётов.

Аннуитетные платежи при погашении кредита — что это, примеры расчета

Помимо размера ссуды и процентной ставки заемщику важна прозрачность выплат. Так он понимает, по каким статьям переплачивает и как эффективнее погасить потребительский кредит в минимальный срок. Этим требованиям вполне соответствует аннуитетный платеж — одинаковый на всех этапах выплаты. Однако так ли он выгоден кредитополучателю? Попробуем тщательнее разобраться в тонкостях подсчета.

Что значит аннуитетный способ погашения кредита

Кредит дает клиенту уникальную возможность — быстро получить на руки капитал, которым можно немедленно распоряжаться. Однако банки не работают с клиентами «просто так»: за предоставление заемных средств они берут плату, которую включают в размер ссуды. В итоге каждый платеж по кредиту можно разделить на две составляющие:

  • Средства, идущие на погашение основного долга;
  • Проценты, которые положены банку за оказание услуг.

Кроме того, в транши могут входить комиссионные выплаты, страховка и штрафы. Но от общей суммы платежа они составляют минимум и взимаются, как правило, единовременно. Опытные заемщики знают, что в кредитной программе важна не только ставка; на переплату влияет и то, по какой схеме банк будет начислять проценты. Так, более выгодным слывет дифференцированный платеж. Он предполагает, что с начала выплат клиент перечисляет равные доли в пользу «тела» кредита, а ставка рассчитывается на остаток долга. Соответственно, каждый месяц основная задолженность тает вместе с процентом и размером платежа. Итоговая переплата по ссуде при таком расчете — минимальна.

[2]

Однако более вероятно, что в банке вам предложат погашение кредита аннуитетными платежами. Этот метод отличает видимая простота: размер ссуды делится на равные части, которые клиент стабильно выплачивает до конца кредита. Загвоздка состоит в структуре платежа. При аннуитете первая половина кредита будет погашать преимущественно проценты банку, а на основной долг придется минимум средств. К концу кредита баланс изменится, и почти весь транш будет уходить на задолженность. Такая схема наиболее выгодна кредитной организации, но для клиента она означает ровно одно — весомую переплату по ссуде.

Как рассчитать аннуитетный платеж по кредиту

Обычно аннуитетный график погашения кредита составляет банк, обработав заявку от клиента. Еще раньше «прикинуть» размер платежа помогают онлайн-калькуляторы. Вбив в них основные параметры — величину займа, ставку, срок и дополнительный функционал — заемщик видит развернутую схему оплаты.

Иногда клиенты предпочитают составить график вручную. Так они лучше уясняют порядок погашения и не рискуют переплатить банку за ненужные услуги. Формула расчета аннуитетного платежа дана ниже:

Формула расчета аннуитетного платежа

A = K* (S*(1+S) p /((1+S) p -1))

Размер ежемесячного погашения

Изначальный размер кредита

Месячная процентная ставка

Число платежных периодов

В целом, схема подсчета состоит из двух частей:

  • Сначала мы определяем коэффициент — в формуле он заключен в круглые скобки.
  • Затем вычисленный коэффициент умножаем на размер ссуды.

Более детально объяснять расчет аннуитетного платежа лучше на примере. Представим, что некий заемщик берет в кредит 850 000 рублей по ставке 16%. Продолжительность выплат — два года. Какой минимальный платеж и итоговая переплата ожидают этого клиента?

  • Разберемся с месячной процентной ставкой (=годовая ставка/12 месяцев/100). В нашем случае она составит 0,013 (=16/12/100).
  • Вычислим коэффициент = (0,013*(1+0,013) 24 )/((1+0,013) 24 —1)=0,05.
  • Рассчитаем аннуитетный платеж = 850 000*0,05 = 42 500 рублей.

Далее простая арифметика показывает: за два года заемщик переплатит 170 000 рублей — а это немало, учитывая изначальный размер ссуды. Существенно облегчить нагрузку может досрочное погашение кредита. В случае аннуитета оно выгодно, если вносить переплату с первого месяца или не позднее первой половины срока. Платить больше на финальном этапе кредитования лишено смысла: при аннуитете большая часть процентов банку уплачена на старте кредита.

Достоинства и недостатки аннуитетной схемы погашения кредита

Аннуитетный кредит наиболее приемлем для банков. С этой схемой расчета они в первую очередь получают «навар» — начисляемые на задолженность проценты. Дифференцированный платеж, в противовес аннуитету, несет много рисков. Учитывая его размер и структуру, банки не всегда могут правильно определить достаточный для такого кредита доход. В итоге на аннуитет приходится 90% предложений на рынке банковских услуг. В чем плюсы данной схемы?

  • Во-первых, клиент получает понятный график платежей на весь срок кредитования. Это позволяет эффективнее планировать бюджет.
  • Во-вторых, транши по аннуитету в несколько раз меньше дифференцированного платежа. Величина последнего может достигать половины заработка клиента — а это делает кредитную нагрузку неподъемной. Аннуитет же сочетает хорошую ставку и доступность с первого дня выплат.

В остальном формула невыгодна потребителю. Ее главный минус — стабильная переплата. Для краткосрочных и среднесрочных займов это не столь критично: в масштабе нескольких месяцев или пары лет издержки аннуитета будут компенсироваться его преимуществами. Однако для крупной ссуды (например, ипотеки) постоянная переплата выльется в грандиозную растрату. Поэтому общая рекомендация для всех заемщиков — предварительно рассчитывать кредит. Выгодность той или иной схемы будет зависеть от совокупности условий — размера, срока и ставки по займу. Универсальной рекомендации здесь не существует.

Формула и расчет аннуитетного платежа по кредиту

Итак, друзья, вот мы и добрались до самого интересного – до формул и расчетов, связанных с аннуитетными платежами. Хотя врём, данная тема скучна и неинтересна. Кто не «дружит» с математикой может сейчас начать зевать, а на определённом этапе – впасть в ступор.

Тем не менее, команда портала temabiz.com решила рискнуть и написать простыми словами о формулах и расчетах аннуитетных платежей. Что из этого получилось, вы узнаете, прочитав эту публикацию.

Формула расчета аннуитетных платежей

Вы точно уверены, что хотите увидеть формулу аннуитетного платежа? Хорошо, вот она:

P – ежемесячный платёж по аннуитетному кредиту (тот самый аннуитетный платёж, который не изменяется в течение всего периода погашения кредита);
S – сумма кредита;
i – ежемесячная процентная ставка (рассчитывается по следующей формуле: годовая процентная ставка/100/12);
n – срок, на который берётся кредит (указывается количество месяцев).

На первый взгляд данная формула может показаться страшной и непонятной. С другой стороны, а надо ли её понимать? Вам же требуется всего лишь рассчитать сумму аннуитетного платежа, верно? А что для этого надо? Правильно, надо просто подставить в формулу свои значения и произвести расчеты. Давайте сейчас этим и займёмся!

Расчёт аннуитетного платежа по кредиту

Допустим, вы решили взять в кредит 50 000 рублей на 12 месяцев под 22% годовых. Естественно, тип погашения будет аннуитетный. Вам надо рассчитать сумму ежемесячных взносов по кредиту.

Давайте для начала красиво оформим наши исходные данные (они нам понадобятся не только в этом, но и в дальнейших расчетах):

Сумма кредита: 50 000 руб.
Годовая процентная ставка: 22%.
Срок кредитования: 12 месяцев.

[1]

Итак, прежде чем приступить к расчёту аннуитетного платежа, надо посчитать ежемесячную процентную ставку (в формуле она скрывается под символом i

Читайте так же:  После удаления щитовидной железы дают группу инвалидности

и рассчитывается так: годовая процентная ставка/100/12). В нашем случае получится следующее:

Теперь, когда мы нашли значение i

, можно приступать к расчёту размера аннуитетного платежа по нашему кредиту:

Путём несложных математических вычислений выяснилось, что сумма ежемесячных отчислений по нашему кредиту будет равна 4680 рублей.

В принципе, на этом можно было бы закончить нашу статью, но вы же наверняка хотите знать больше. Правда? Вот скажите, вы хотите знать, какую долю в данных выплатах составляют проценты по кредиту, а какую – тело кредита? Да и вообще, сколько вы переплатите по кредиту? Если да, тогда мы продолжаем!

График погашения кредита аннуитетными платежами

Вначале мы продемонстрируем вам сам график аннуитетных платежей, проанализируем его вместе с вами, а уж затем детально расскажем о том, как и по каким формулам мы его рассчитали.

Вот так выглядит аннуитетный график погашения нашего кредита:

А это диаграмма (для наглядности):

И график, и диаграмма подтверждают написанное в публикации: Что такое аннуитетные платежи. Если вы по каким-то причинам её не читали, то обязательно это сделайте – не пожалеете. А те, кто читал, могут убедиться, что в аннуитетном графике погашения кредита выплаты осуществляются равными суммами, на начальном этапе доля процентов по кредиту самая высокая, а ближе к окончанию срока она существенно снижается.

Обратите внимание на то, что тело кредита погашается с первого же месяца кредитования. Просто на некоторых сайтах можно прочитать что-то типа такого: «При аннуитетной схеме погашения займа, вначале выплачиваются проценты, а уже потом само тело кредита». Как видите, это утверждение не соответствует действительности. Правильнее будет сказать так:

Аннуитетные платежи содержат в себе на начальном этапе высокую долю процентов по кредиту.

Тело же кредита тоже погашается с первого месяца кредитования. Тем самым, уменьшается сумма долга и, соответственно, размер выплат процентов по кредиту.

Теперь давайте детальнее изучим наш график аннуитетных платежей. Как видите, ежемесячный платёж у нас составляет 4680 рублей. Именно эту сумму мы будем каждый месяц выплачивать банку на протяжении всего срока кредитования (в нашем случае – на протяжении 12 месяцев). В результате, общая сумма выплат составит 56 157 рублей. В кредит же мы брали 50 000 рублей (в графике это четвёртая колонка, которая называется «Погашение тела кредита»). Получается, что переплата по данному займу составит 6157 рублей. Собственно, это и есть проценты по кредиту, которые указаны в третьей колонке нашего графика аннуитетных платежей. Получается, что эффективная процентная ставка (или полная стоимость кредита) у нас составит – 12,31%. Давайте «красиво» оформим данную информацию:

Ежемесячный аннуитетный платёж: 4680 руб.
Тело кредита: 50 000 руб.
Общая сумма выплат: 56 157 руб.
Переплата (проценты) по кредиту: 6157 руб.
Эффективная процентная ставка: 12,31%.

Итак, мы с вами проанализировали график аннуитетных платежей. Осталось понять, как вычисляется процентная доля и доля тела кредита в ежемесячных выплатах. Вот почему в первый месяц проценты составляют именно 917 рублей, во второй – 848 рублей, в третий – 777 рублей и т.д.? Хотите узнать? Тогда читайте дальше!

Читайте так же:  Согласие органа опеки на установление отцовства образец

Расчёт процентов по аннуитетным платежам

Посчитать долю процентов в аннуитетных платежах вам поможет вот эта формула:

In – сумма в аннуитетном платеже, которая идёт на погашение процентов по кредиту;
Sn – сумма оставшейся задолженности по кредиту (остаток по кредиту);
i – уже знакомая вам ежемесячная процентная ставка (в нашем случае она равна – 0.018333

).

Давайте для наглядности рассчитаем долю процентов в первом платеже по нашему кредиту:

Так как это первый платёж, то суммой оставшейся задолженности по кредиту является весь кредит – 50 000 руб. Умножив эту сумму на ежемесячную процентную ставку – 0.018333, мы и получим 917 руб. – сумму, указанную в нашем графике.

При расчёте суммы процентов в следующем аннуитетном платеже, на месячную процентную ставку умножается долг, который сформировался на конец предыдущего месяца (в нашем случае это 46 237 руб.). В результате получится 848 руб. – размер доли процентов во втором аннуитетном платеже. По такому же принципу рассчитываются проценты в остальных платежах. Далее давайте вычислим составляющую в аннуитетных платежах, которая пойдёт на погашение тела кредита.

Расчёт доли тела кредита в аннуитетных платежах

Зная долю процентов в аннуитетном платеже, можно легко посчитать долю тела кредита. Формула расчёта проста и понятна:

S – сумма в аннуитетном платеже, которая идёт на погашение тела кредита;
P – ежемесячный аннуитетный платёж;
In – сумма в аннуитетном платеже, которая идёт на погашение процентов по кредиту.

Как видите, здесь нет ничего сложного. По сути, аннуитетный платёж содержит в себе две составляющие:

  1. 1.

Долю процентов по кредиту.

  • 2.
  • Долю тела кредита.

    Если нам известна величина самого аннуитетного платежа и размер процентной доли, то на погашение тела кредита в этом платеже пойдёт то, что останется после вычитания из него суммы процентов.

    Расчёт доли тела кредита в нашем первом платеже выглядит так:

    Надеемся, теперь всем понятно, откуда в графе «Погашение тела кредита» нашего графика аннуитетных платежей в выплатах за первый месяц взялась сумма 3763 руб. Да-да, это именно то, что осталось после того, как мы из суммы аннуитетного платежа (4680 руб.) вычли сумму процентов по кредиту (917 руб.). Аналогичным образом рассчитаны значения этой графы за последующие месяцы.

    Итак, с телом кредита разобрались. Теперь осталось выяснить, как рассчитывается долг на конец месяца (в графике аннуитетных платежей это у нас последняя колонка).

    Как рассчитать долг на конец месяца в графике аннуитетных платежей

    Прежде всего, надо понимать, что именно является вашим долгом по кредиту, и какие выплаты способствуют его уменьшению. В нашем примере вы берёте в кредит 50 000 рублей – это и есть ваш долг. Переплаченные по кредиту проценты (6157 рублей) вашим долгом не являются, это всего лишь вознаграждение банку за предоставленный кредит. Таким образом, можно сделать вывод:

    Погашение процентов по кредиту никак не способствует уменьшению вашего долга перед банком.

    В кризисные времена банки часто «идут навстречу» своим должникам. Они говорят как-то так: «Мы понимаем, у вас сейчас проблемы! Окей, наш банк готов пойти вам на уступки – можете нам просто погашать проценты, а само тело кредита погашать не надо. Все же люди братья и должны друг другу помогать! Бла-бла-бла…»

    На первый взгляд такое предложение может показаться выгодным, а сам банк – «белым и пушистым лапулей». Ага, как бы ни так! Если взять в руки калькулятор и провести простые арифметические расчёты, то сразу становится ясно, что реальное предложение банка выглядит приблизительно так:

    «Ребята, вы попали на деньги! Ничего не поделаешь, это жизнь! Предлагаем вам на время (а может и навсегда) стать нашим рабом – будете ежемесячно выплачивать проценты по кредиту, а сам долг погашать не надо (ну, чтобы сумма выплат по процентам не уменьшалась). Ничего личного – это просто бизнес, друзья!»

    Теперь запомните главную мысль:

    Именно погашение тела кредита вытаскивает вас из долговой ямы. Не процентов, а именно тела кредита.

    Наверняка вы уже догадались, как рассчитывается долг на конец месяца в нашем графике платежей. В общем, формула выглядит так:

    Sn2 – долг на конец месяца по аннуитетному кредиту;
    Sn1 – сумма текущей задолженности по кредиту;
    S – сумма в аннуитетном платеже, которая идёт на погашение тела кредита.

    Обратите внимание! При расчёте долга на конец месяца, от общей суммы текущей задолженности отнимается только та часть платежа, которая идёт на погашение тела кредита (уплаченные проценты сюда не входят).

    Давайте для наглядности посчитаем, каким будет долг на конец месяца по нашему кредиту после внесения первого платежа:

    Итак, при первом платеже текущая задолженность по кредиту у нас равна всей сумме займа (50 000 руб.). Чтобы посчитать долг на конец месяца, мы отнимаем от этой суммы не весь ежемесячный платёж (4680 руб.), а только ту часть, которая ушла на погашение тела кредита (3763 руб.). В результате наш долг на конец месяца составит 46 237 руб., именно на эту сумму будут начисляться проценты в следующем месяце. Естественно, они будут меньше, так как сумма долга уменьшилась. Теперь вы понимаете, почему важно погашать именно тело кредита?

    Видео (кликните для воспроизведения).

    Итак, друзья, мы с вами разобрались с формулами и расчетами аннуитетных платежей. Надеемся, теперь у вас нет вопросов по этой теме, и вы запросто сможете произвести все необходимые расчеты, а также составить график аннуитетных платежей по кредиту. Единственное, что бы вам, наверное, хотелось, это как-то автоматизировать процесс расчетов. Вы не поверите, но это возможно! Хотите узнать как? Тогда переходим к публикации: Расчет аннуитетных платежей по кредиту в Excel.

    Источники


    1. Матвиенко, Л.О.; Соколов, А.Н. Как оформить земельный участок в собственность; М.: Инфра-М, 2013. — 425 c.

    2. Марченко, М. Н. Теория государства и права / М.Н. Марченко, Е.М. Дерябина. — М.: Проспект, 2012. — 720 c.

    3. История политических и правовых учений / В.Г. Графский и др. — М.: Норма, 2003. — 944 c.
    4. Пивовар, А.Г. Большой англо-русский юридический словарь: моногр. / А.Г. Пивовар. — М.: Экзамен, 2016. — 864 c.
    5. Пивоваров, Ю.С. История судебных учреждений России / Ю.С. Пивоваров. — М.: ИНИОН РАН, 2015. — 222 c.
    Формула досрочного погашения кредита при аннуитетных платежах
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here